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Abstract 

 
 
Governments devote a large share of public budgets to construct, repair, and modernize 
school facilities. However, evidence on whether investments in the physical state of schools 
translate into better student outcomes is scant. In this study, we report the results of a large 
field study on the implications of poor air quality inside classrooms − a key performance 
measure of school mechanical ventilation systems. We continuously monitor the air quality 
(i.e., CO2), together with a rich set of indoor environmental parameters in 216 classrooms in 
the Netherlands. We link indoor air quality conditions to the outcomes on semi-annual 
nationally standardized tests of 5,500 children, during a period of five school terms (from 2018 
to 2020). Using a fixed-effects strategy, relying on within-pupil changes in air quality conditions 
and test results, we document that exposure to poor indoor air quality during the school term 
preceding a test is associated with significantly lower test results: a one standard deviation 
increase in the school-term average daily peak of CO2 leads to a 0.11 standard deviation 
decrease in subsequent test scores. The estimates based on plausibly exogenous variation 
driven by mechanical ventilation system breakdown events confirm the robustness of the 
results. Our results add to the ongoing debate on the determinants of student human capital 
accumulation, highlighting the role of school infrastructure in shaping learning outcomes. 
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1 Introduction

Governments invest billions of dollars in the construction and modernization of school facilities

on an annual basis. In the US alone, school infrastructure receives over $60 billion annually

(Cornman et al., 2022), the second-biggest public investment in the country (G.A.O., 2020).

In addition, the 2020 “Reopen and Rebuild America’s Schools Act” allocated an extra $130

billion to the renovation, modernization, and construction of schools (Cochrane, 2021). Yet,

many schools, in the US and beyond, are in some state of disrepair. For example, more than

40% of schools in the US rely on outdated heating, ventilation and cooling (HVAC) systems

that need to be updated or replaced, a significant concern for facilities where children spend an

average of eight hours per day (G.A.O., 2020; Rijksoverheid, 2020).1

However, little is known about the impact of deficient ventilation systems on educational

outcomes. Failing ventilation leads to an increase in concentration of indoor air pollutant con-

centrations in classrooms (Fisk, 2017), and increases the risk of transmission of airborne dis-

eases.2. Lab studies have provided initial evidence on the detrimental consequences of short-term

exposure to poorly ventilated rooms on cognitive performance (Seppanen et al., 2006; Du et al.,

2020). Subjects exposed to poorly ventilated rooms, for at least three hours, displayed lower

performance on cognitive functions (including basic activity level, applied activity level, focused

activity level, crisis response, information usage, breadth of approach, strategy) (Allen et al.,

2016). Experimental evidence shows that children in poorly ventilated classrooms struggle to pay

attention and display lower performance in attention, concentration and memory tests (Bakó-

Biró et al., 2012; Fisk, 2017). However, there is a lack of long-term field studies that estimate

the impact of poor classroom ventilation on educational outcomes.

This paper provides the first evidence on the implications of variation in ventilation on

student performance based on a large sample of primary schools, including more than 5,500

primary school students (ages 5 to 13). Primary school students spend most of their school days

in the same classroom, experiencing prolonged exposure to the indoor conditions of that specific

room. We report the results of a large, pre-registered field study in which we deploy a network of

1Similar to the US, nearly 30% of schools in the Netherlands rely on outdated HVAC systems. In the Nether-
lands, where this study is taking place, the central government recently provided a one-off subsidy of nearly e400
million to primary and secondary schools, exclusively for improving the ventilation infrastructure (Rijksoverheid,
2020).

2Since the beginning of the COVID-19 pandemic, focus on the implications of poor ventilation on the spread of
airborne diseases has increased. Poorly ventilated rooms represent a public health risk, given the high exposure risk
to occupants’ saliva droplets. In response, governments in countries such as the US, Germany, and the Netherlands
are increasing public spending to upgrade ventilation systems to reduce the risk of SARS-COV-2 transmission in
schools (BBC, 2020; Rijksoverheid, 2020).
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sensors, continuously monitoring the indoor environmental conditions in 216 classrooms across

27 primary schools in the Netherlands over a period of five school terms.3 Each sensor collects

high-frequency measurements on a range of indoor environmental variables: CO2, coarse and fine

particles, temperature, humidity, noise levels, and light intensity. To estimate the impact of a

classroom’s ventilation quality on the cognitive development of students, we relate daily measures

of indoor air quality in classrooms to student scores on nationally standardized tests. During

the sample period (2017-2020), each student took an average of seven tests across a range of

subjects, including mathematics, spelling, reading, and vocabulary, resulting in more than 37,000

unique test outcomes. All tests in our sample were designed by a national examination center

(i.e., not by the teacher) and are part of a national tracking system to monitor the development

of students throughout their primary school education.

Our primary measure of ventilation in classrooms is based on the concentration of carbon

dioxide (CO2) in the room. Humans produce and exhale CO2, which is removed from the room

by either mechanical systems (i.e., HVAC) or natural ventilation (i.e., opening windows) that

exchange indoor with outdoor air. Engineers and scientists widely use CO2 as an indicator of

how much fresh (outdoor) air is brought into a room, and public officials use it to set guidelines

and evaluate the performance of ventilation systems in buildings. As the ventilation rate (i.e.,

the replacement rate of indoor air with fresh, outdoor air ) decreases, the CO2 concentration in

the room increases. To account for potential confounders, we rely on the panel structure of the

data to estimate models with test domain and student fixed effects. Our estimates identify the

impact of indoor air quality (i.e., CO2) during the prior school term on end-of-term test results,

by leveraging within-student variation in air quality over multiple school terms.

The main results show that children who were exposed to high concentrations of CO2 during

the learning period perform worse on subsequent standardized tests. In our preferred specifi-

cation, including a rich set of fixed effects, a one-standard-deviation increase in the CO2 level

during the school term leads to a 0.11-standard-deviation reduction in test scores. The effects are

strongest for mathematics, where a one-standard-deviation increase in the CO2 level during the

school term is associated with an 0.21 standard deviation decrease in test scores. Evidence from

a heterogeneity analysis suggests poor ventilation impairs learning outcomes of students most

strongly for ages 8-12 years old. Our identification strategy relies on the premise that variation

in air quality over successive terms for a given student is uncorrelated with unobserved determi-

3For the pre-registration of the study, see Palacios et al. (2020).
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nants of learning.4 The results from a specification-curve analysis that tests 160 specifications

of our main regression analysis show the magnitude and significance of the coefficient associated

with CO2 levels remains largely unchanged when we include several combinations of indoor en-

vironmental controls. Similarly, we provide the results of a set of falsification tests in which we

match students’ learning outcomes with data from sensors deployed in other classrooms. The

lack of significant effects suggests our results are not driven by spurious correlation associated

with general school characteristics.

A battery of robustness tests further sheds light on the role of three main sources of variation

in the classroom over time in CO2 concentrations in classrooms in our sample: changes in (1)

student activity patterns, (2) teacher behavior, and (3) ventilation infrastructure. First, we

include controls for changes in activity patterns of students in the classroom. The noise sensor

in our study is able to capture minute-by-minute changes in background noise that correlate with

a variety of student behavior related to the production of CO2, such as screaming or moving

in the class during teaching hours. The noise sensor also picks up background noise associated

with the opening of windows. In an analysis that tests multiple specifications for noise patters

in the classroom, we show the magnitude and significance of the coefficient associated with CO2

levels remains largely unchanged after the inclusion of multiple noise indicators, suggesting the

activity patterns in the classrooms are not a main driver of our effects.

Second, we test the correlation between teacher quality, as measured by the test scores of

the three cohorts of their students, and the average daily peak CO2 concentration levels in their

classrooms over all five semesters in the sample. The results show no significant correlations,

suggesting a lack of correspondence between teacher quality and classroom air quality. Third,

we implement an instrumental variable strategy relying on the plausibly exogenous variation in

CO2 concentration associated with failures in school ventilation systems, in the subsample of

schools that are mechanically ventilated (85% sample). The failure of an HVAC system on a

given day results in sustained and abnormally high levels of CO2 in the classroom (20%-40%

higher than on days when the HVAC system is functioning properly). The results of a two-stage

least-squares identification strategy, using ventilation breakdowns as the instrument, show a

reduction in test scores of 0.25 standard deviations – an effect that is larger and more robust

than results reported in the main specification.

This study is the first to show exposure to poor air quality inside the classroom can hinder

4We include controls for classroom infrastructure attributes by including classroom fixed effects as well as
time-varying factors that could be contemporaneous and correlated with CO2, such as air particles, temperature,
noise, and relative humidity.
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student performance, which speaks to the long-standing debate on the relationship between in-

vestments in school infrastructure and academic achievements (see Hanushek (2003)). Existing

evidence shows a positive impact of school construction projects in contexts where certain ele-

ments of school infrastructure were either in extremely poor condition or non-existent, which sug-

gests new school construction projects are generally positively associated with student outcomes

(Duflo, 2001; Aaronson and Mazumder, 2011; Neilson and Zimmerman, 2014). Similarly, another

stream of quasi-experimental studies investigates the link between (general) school spending or

school investment campaigns for school infrastructure and academic outcomes (Martorell et al.,

2016; Jackson et al., 2016). Finally, Stafford (2015) provides evidence that public funding cam-

paigns targeting mold reduction and ventilation improvements have a positive impact on student

performance in elementary schools. This study departs from the existing literature by investigat-

ing actual air quality in the classroom, using high-frequency measures of indoor environmental

quality, rather than relying on monetary indicators of changes in school infrastructure. Our

outcome-based approach to school quality can facilitate more precise estimates than a purely

input-based approach.5

In addition, this paper contributes to the nascent literature exploring the role of environ-

mental factors (i.e., air pollution and extreme heat) in determining cognitive performance and

human capital development. Over the last decade, a number of studies have provided quasi-

experimental evidence on the negative effects of exposure to extreme temperatures or ambient

air pollution on human health and human capital accumulation (see, for a review, Graff Zivin

and Neidell (2013) and Graff Zivin and Neidell (2018); Roth (2017)). Prolonged exposure to high

levels of air pollution has been associated with respiratory problems in early life (e.g., asthma),

affecting school absence (Currie et al., 2009; Currie and Walker, 2011; Knittel et al., 2016) and

infant mortality (Chay and Greenstone, 2003; Currie and Neidell, 2005).6

Beyond the health damage, increasing evidence shows the direct consequences of exposure to

air pollution on the human brain and cognitive performance (Zhang et al., 2018). An increasing

number of studies show exposure to air pollution harms student performance. Numerous studies

have linked local levels of air pollution on testing days (i.e., high levels of PM2.5) to lower

performance of young adults in high-stakes examinations (Ebenstein et al., 2016; Roth, 2018;

5See Hanushek (2003) for a discussion of misallocation of resources in school investments driven by input-based
approaches.

6Additionally, numerous studies show the effects of elevated concentrations of fine particles on mortality rates in
adult populations (Liu et al., 2019). At the macro level, the impact of air pollution on human health is staggering:
the World Health Organization (WHO) estimates 7 million premature deaths due to poor air quality (WHO,
2014).
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Graff Zivin et al., 2020).7 Finally, accumulated exposure to traffic or industry-induced pollution

during an academic year has been associated with lower test scores in subsequent exams, and

with behavioral incidents during high school (Persico and Venator, 2019).

Our results contribute to the existing literature in multiple ways. First, the overwhelming

majority of studies use outdoor climate measurements to assess students’ exposure, often using

data from satellites, air quality, or weather stations located miles away from the schools where

the pupils are learning and taking their tests.8 We collect data on air quality and other envi-

ronmental metrics inside the classrooms in which our subjects are learning and taking exams,

overcoming the challenge of measurement error that could result from mis-assigning environ-

mental conditions to individuals (Moretti and Neidell, 2011; Roth, 2018). The data retrieved

from our large sensor network allow us to control for a rich set of factors often neglected in the

literature (e.g., noise, humidity). Second, we provide evidence on the impact of environmental

conditions on children in primary schools, a cohort in which the implications of exposure to poor

air quality or extreme temperatures are still largely unexplored. Whereas the current evidence

mostly relies on samples of high school or university students, the children in our study are 5 -

13 years old, a critical age range for cognitive and human capital development (Howard-Jones

et al., 2012; Heckman, 2006).9 Our estimates are based on a high-quality panel that contains

individual standardized tests in all core learning dimensions that each child takes twice a year,

throughout all primary school years.

The remainder of the paper is organized as follows. In section 2, we describe the study design

and descriptive statistics of the main variables in the study. Section 3 describes the empirical

strategy used to link indoor environmental conditions to student academic performance. Section

4 presents the estimation results, section 5 investigates their robustness, and section 6 concludes.

7Air pollution also affects labor market outcomes. In particular, the literature provides evidence of air pollution
affecting the productivity of agricultural workers (Graff Zivin and Neidell, 2012), the productivity of factory
workers (Chang et al., 2016), and the performance of soccer players (Lichter et al., 2017). Importantly, the effects
of outdoor ambient air pollution also have implications for indoor labor, affecting call center productivity (Chang
et al., 2019), trading activity (Meyer and Pagel, 2017), decision time and quality of judges (Kahn and Li, 2020),
and the performance of chess players (Künn et al., 2019).

8A notable exception is Roth (2018), who deploys indoor sensors to measure the level of air particles (PM10)
during the exams of university students.

9Persico and Venator (2019) is a notable exception, investigating the impact of proximity to industrial sites
or busy highways on the performance of primary school students, studying the learning performance of children
from grade 5 onwards (10–11 years old).
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Figure 1: Map of School Locations and Average Income

Note: Figure 1 shows the location of each school in the sample (bright red). Dots in dark red represent schools in the area
not selected for the study. Schools were selected based on a random sample of a set of 47 schools belonging to the largest
school board in the region. All schools in the sample below to the same metropolitan area, with similar household income,
outdoor temperature and outdoor level of air quality. The metropolitan area has a total of 257.499 inahbitants, spread over
6 municipalities (Wikipedia, 2022).

2 Study Design and Data

This study exploits data from a large-scale network of sensors that we deployed in 216 classrooms

across 27 schools in the Netherlands. In each of the five school semesters in the sample period

(2018-2020), the schools have an aggregate enrollment of more than 5,500 students.

2.1 School Characteristics

Our sample consists of 27 schools randomly selected from 47 schools managed by the largest

school board in the province of Limburg, the most southern province in the Netherlands.10 The

bright red hexagons in Figure 1 show the location of each school.11 All schools are located in

the same metropolitan area, exposed to similar levels of outdoor temperature and outside air

quality. The metropolitan area in which the schools are located is generally considered a lower-

SES part of the Netherlands, with median net household incomes varying from €21.9 to €25.6k,

compared to the national median household income of €25.8k.

All schools in the sample follow the same teaching curriculum, and children are evaluated

10See Palacios et al. (2020) for the study protocol, including a detailed description of the sample and school
typology, pre-analysis plan, and an extensive discussion of sensor placement and calibration.

11The dark hexagons display the schools that are part of the school board, but were not selected for the study.
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Table 1: Description of Schools and Groups in Our Sample

Panel A: Schools Mean St. Dev. Min. Max.

Classrooms per school 8 2 5 13
Age of school building (in years) 29 21 2 88
School with mechanical ventilation (in %) 85
Age of ventilation system (in years) 8 6 0 21

Panel B: Student Groups

Student Age 9 2 5 13
Group Size 28 10 15 63
Years of Education 3 1 0 8

Panel C: Average test per student

All tests domains & all groups 9 4.3 1 22
Mathematics 2.4 1.0 0 5
Language skills 6.6 3.4 0 17
Age: 5−7 year old 4.1 2.0 1 10
Age: 8−9 year old 5.0 2.0 1 11
Age: 10−13 year old 8.1 3.9 1 22

Notes: The variable years of education captures the number of years that a student has been enrolled in a primary school.
Group size describes the number of students in groups. Age of building describes the number of year since the construction
of the school to the beginning of our sample period (January 2018). Row “School with mechanical ventilation (in %)”
describes the percentage of schools in our sample with a mechanical ventilation system. Panel C describes the average
number of tests that students in our sample take overall, as well as the number of tests in mathematics or language skills
(spelling, reading and vocabulary). Finally, it reports average tests taken by different age groups in our sample.

following the same set of nationally standardized exams (Section 2.1.1 describes the national

testing system in depth). Panel A of Table 1 describes the characteristics of the 27 schools in

the sample. The average school has 8 classrooms, and is 29 years old. The majority of schools

in our sample (85 %) have a mechanical ventilation system, that was installed eight years ago,

on average.12 All schools in our sample have heating systems, and none of the schools have an

air-conditioning (cooling) system, with relatively mild temperatures in the Netherlands.

Panel B of Table 1 describes the distribution of students’ and groups’ characteristics in our

sample. The average student in our sample is 9 years old. The youngest students are five years

old, and the oldest students are thirteen years old. In our study, we focus on students aged

almost six and older, the age at which the standardized test system starts for all core subjects

in the curriculum.

2.1.1 Student Performance Data: Nationally Standardized Tests

In the Netherlands, student performance in primary schools is tracked through biannual, na-

tionally standardized tests taking place halfway through the school year (January/February)

and at the end of the school year (May/June). The tests cover a wide range of education do-

12In schools without mechanical ventilation, the ventilation is “natural” (i.e. by opening and closing windows).
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mains, including mathematics, reading, spelling, and vocabulary, and apply to students from

Kindergarten through 6th grade.13

We collect the scores in all tests over the entire primary school education for each student

in our sample. The source of this data is the OnderwijsMonitor Limburg − a collaboration

between Maastricht University and the elementary schools, school boards, and municipalities in

the province of Limburg (for more information, see Borghans et al. (2015)). For the purpose of

this study, we exclude testing data in Kindergarten (Group 1 and Group 2), given the limited

amount of testing taking place for these grades and the limited comparability of test results

relative to subsequent grades.

The tests are designed by a national examination center called CITO, administered at each

individual school, and graded by the teachers using a standardized grading scheme. The raw

scores are transformed into percentiles by the examination center CITO. The rules for transfor-

mation are constant over time, such that results for the same student can be compared between

periods.The main outcome variable is the standardized score for each student, in each test period

and domain.14

Panel C of Table 1 describes the coverage of tests in our sample. On average, each student in

our sample takes 9 tests, 2.4 in math and 6.6 in language skills (including spelling, vocabulary and

reading proficiency). 15. The dataset covers students throughout the primary school education.

Students in our sample between 5 and 7 years old take an average of 4.1 tests, 8-9 year-old

students take 5 tests on average and 10-13 take 8.1 on average.16

2.2 School Ventilation and Environmental Conditions in Classrooms

For each school in the sample, the environmental conditions in each classroom with students

in group three and above are continuously monitored throughout the sample period (i.e., 2018-

2020), using advanced environmental sensors. We use wall-mounted stationary sensors from the

sensor company Aclima, Inc., that monitor the levels of CO2 (ppm), coarse and fine particles

(PM10, counts/L), temperature (◦ C), relative humidity (rH), light intensity (lux) and noise

(dBA). The sensors capture raw data with a frequency of 1 to 30 seconds, transmitting all data

13In the Netherlands, grades correspond to groups, where Kindergarten is group 1, for 4 year-old children, and
6th grade is group 8, for 12 year-old children.

14For each test period, we construct a comparable scale for each domain, standardizing the variable to have a
mean of zero and a standard deviation of one within a given test in a test period.

15The remaining tests are studying skills and listening comprehension
16The sample split based on age is based on the tertiles in the distribution of number of students in the sample.
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Table 2: Summary Statistics for Environmental Conditions in Classrooms

Panel A: Classroom Ventilation Mean St. Dev. Min. Max.

Daily Peak of CO2 (in ppm) 1495 624 737 4665
Daily Average CO2 (in ppm) 988 336 485 2783
Percentage of days with CO2 in classroom > 1000 ppm 77 29 0 100
Percentage of days with CO2 in classroom > 2000 ppm 15 26 0 100

Panel B: Indoor Environmental Quality Mean St. Dev. Min. Max.

Temperature (in ◦C) 21 1 18 25
Humidity (in rH) 43 6 28 57
Noise (in dBA) 56 2 47 64
PM10 (in Count/L) 1104 576 72 3465

Notes: The summary statistics of the environmental parameters presented in Panel B are based on the distribution
of daily averages over school periods.

to a cloud-based server whereis aggregated at the minute frequency.17

We assess the degree of ventilation in each classroom based on the levels of CO2 concentra-

tion, as a direct measure of the ventilation rate in the room. CO2 is a widely used indicator

by building facility managers and policymakers to monitor and regulate ventilation rates in

buildings (ASHRAE, 2022). Occupants exhale CO2, which stays in the room until mechanical

or natural ventilation removes it and exchanges it with outdoor air. The recommendation from

the main US institution setting standards in building ventilation, the American Society of Heat-

ing, Refrigerating and Air-Conditioning Engineers (ASHRAE, Standard 62-2001) highlights that

building ventilation rates should keep indoor CO2 concentrations at a maximum of 1,000-1,200

parts per million in schools (ppm) (i.e., 700 ppm above outdoor concentrations) The levels of

outdoor CO2 are almost always considerably lower than those in occupied rooms – the global

average atmospheric carbon dioxide in 2020 was 412.5 ppm (NOAA, 2021).18 The variation in

CO2 levels inside classrooms that we observe in our sample is almost fully caused by indoor

sources, i.e. human breathing, with negligible variation from outdoor levels.

Table 2 provides the summary statistics of the indoor environmental conditions retrieved

from the sensors, in days when the students in our sample are inside the classrooms. We restrict

the sample period to the official school days and exclude those in which a classroom is emptied,

which we infer by observing relatively low levels of CO2 and noise in the room.

17The deployment of sensors took place between January 2018 and December 2018. Each sensor is plugged into
the wall for electricity and is connected to the local WiFi network for secure data transmission. During some
days there are sensors that do not deliver any data (typically the result of sensors that are unplugged during
cleaning, etc.). Supplementary Figure D.2 describes the daily statistics of sensor coverage per date as well as the
time period covered by the sensors. The figure shows that the sensor network is fully deployed in January 2019,
and the network has been fully operational since then.

18In addition, the onset of COVID-19 has triggered the development of new guidelines to support strategies to
use ventilation to tackle transmission risk of airborne diseases (e.g. EPA, 2022).
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Panel A in Table 2 describes the distribution of CO2 levels in our sample. Consistent with

Fisk (2017), who provides a recent review of the literature of CO2 in schools, all students in

our sample are exposed to CO2 levels above the recommended threshold (700 parts per million

(ppm) above outdoor concentrations (i.e., 1,100-1,200ppm) recommended by ASHRAE). The

distribution of daily peaks of CO2 indicates that the average student in our sample is exposed

to 1,495 ppm on a given school day, with a range spanning from 737 ppm to 4,665 ppm (i.e.

almost four times the limit recommended by ASHRAE). The levels of CO2 exceed 1,000 (2,000)

ppm 77% (15%) of teaching days.

Panel B in Table 2 provides the summary statistics of the indoor environmental quality

variables collected by the sensors. The results show that, on average, the levels of tempera-

ture, humidity, particles and noise are within the healthy and comfortable levels proposed by

regulators. The average thermal conditions, measured by the relative humidity and tempera-

ture in the classroom, are within the comfortable levels. The average temperature level is 21◦C

(69.8◦F), within the comfortable range for humans (17–24◦C; 63-75◦F) and below the tempera-

tures considered harmful for human health (Asseng et al., 2021).19 The relative humidity levels

are between the recommended thresholds by the Environmental Protection Agency (i.e., 30-

50%). 20. Finally,the levels of noise in the classrooms are below the levels affecting human health

(Hammer et al., 2014). 21

3 Empirical Approach

In our identification strategy, we exploit the fact that we observe students that are tested multiple

times during the sample period, with exposure to varying levels of indoor air quality during the

school term preceding the test (i.e. the learning period). The data allows us to test whether

students score lower following a term in which their classroom was poorly ventilated on average,

relative to their own score following a school term in a classroom with “good” air quality (or

vice versa).

We estimate a fixed-effects model that removes the influence of confounding factors driven by

ex-ante differences in student skills or socio-economic background, classroom infrastructure, and

19In our regression, we control flexibly for temperature to avoid any confounding effects in our estimates
associated with CO2.

20For more details about humidity control in schools, see https://www.epa.gov/iaq-schools/moisture

-control-part-indoor-air-quality-design-tools-schools
21We also tested for background levels of noise with the distribution of noise in unoccupied classrooms. On

average, all classrooms in our sample display noise levels below 35 dBA – i.e. the recommendations by the
American National Standards Institute and the Acoustical Society of America (Spratford et al., 2019).
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general trends in test scores in our sample for each testing domain. More formally, we estimate

the following specification:

Scoreidt = βCO2ct + αid + αt + αc + αl + ΓXct + εidt (1)

where Scoreidt is the standardized test score of student i, in domain d (e.g., mathematics, vo-

cabulary, etc.), and testing period t (e.g. February 2020 or June 2019). We define CO2 exposure,

CO2ct, as the average daily peak CO2 experienced during school days in the school term prior to

the test for all students in classroom c taking the test in testing period t.22 We standardize the

parameter, such that the coefficient of interest β can be interpreted as the standard deviation

impact on a student’s test score associated with a standard deviation increase in the average

daily peak of CO2 in the classroom where students took classes during the term.

The model includes fixed effects for each student i by test domain d (αid) to capture changes

in idiosyncratic abilities of students in different education domains (e.g. mathematics, reading,

etc.). The inclusion of testing-period t fixed effects (αt) controls for common factors affecting

all pupils taking a test in the same testing period (e.g. changes in levels of outdoor pollution or

ambient temperatures). The classroom fixed effects (αc) control for all time-invariant character-

istics of a classroom, such as views or angle to the sun, and the teaching infrastructure in the

room (e.g. digital boards, furniture, etc.).23

Finally, Xct is a vector of indoor environmental quality, group, and individual controls con-

taining average daily peak measures of PM10, Temperature, and Humidity observed in the

classroom during the learning period, a linear and quadratic term for group size, two dummies

indicating the age of the student, i.e. 8 to 10, and 10 to 13 years old (with reference 5 to 8 years

old), and the average level of noise in the classroom during the learning period. In addition, we

include a series of dummmies describing the years of schooling by the time they take the test in

their school time.

Standard errors (εict) are clustered at the classroom-by-period level to control for correlation

among test results for students learning in the same classroom at the same time, and following

22Section 5.1 includes an specification curve, where we test a wide variety of specifications of our treatment
variable to test the sensitivity of our results to the specification of the exposure to CO2.

23Finally, it is important to note that in our setting, classroom equipment and teacher quality are unlikely to
co-move over time with the indoor air quality in the classroom. A series of focus interviews between the research
team and the board of the schools confirmed the lack of major changes in school furniture or equipment during
our sample period. In our sample of schools, the teaching material and equipment is procured at the school level or
at school−board level. In a robustness check, we include school-by-year fixed effects αst to control for the present
of any school-level shocks. In addition, the research team undertook visual inspection to a random set of schools
every school term, confirming the lack of changes in the classrooms during the study period.
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the suggestion by (Abadie et al., 2017) to cluster at the level of treatment variation. In addition,

all regressions are weighted by the number of days a sensor records valid data in each school

term, to take into consideration the sample size from which we derive our exposure measures

during each school term.

The identifying assumption of our empirical approach is that the variation in standardized

test scores for each student, conditional on the set of fixed effects, is independent of other

variables that might be correlated with CO2 levels. To ensure the robustness of our results, we

implement the following strategies.

First, the access to a rich set of environmental parameters from the environmental sensors

allows controlling for a number of factors often neglected in the literature. All specifications

include a set of environmental controls (Xct) that enable us to isolate the impact of indoor

air quality (CO2) from all other key environmental conditions in the classroom – i.e. average

exposure to a classroom’s coarse and fine particles (PM10), temperature, relative humidity and

noise intensity.24 To test the robustness of our results to different specifications, we implement a

specification curve where we test the changes in our main parameter of interest under multiple

transformations of the CO2 measure and the environmental controls.

Second, a challenge to our identification is that teachers might sort into rooms based on

indoor environmental quality, with high-quality teachers selecting classrooms with better venti-

lation. In our setting, it is the school principals who determine classroom allocation to teachers

and student groups, rather than individual teachers. Furthermore, the classroom fixed effects of

the fixed-effect model partly control for possible self-selection into classrooms, since those teach-

ers that always teach in their favorite classroom will be part of the time invariant aspects of the

classroom. In a robustness check, we collect data on the allocation of teachers to classrooms in

each term and for each school in our sample to test how the average value added of each teacher

in children scores correlates the average levels of CO2 over the entire sample period of the study.

The lack of correlation between average CO2 levels and teacher quality supports the robustness

of our results.

Finally, in order to further isolate the impact of ventilation on learning outcomes, we exploit

the plausibly exogenous variation in CO2 associated with failures in schools’ ventilation systems.

The vast majority of schools in the sample (85%) are mechanically ventilated. The failure of a

mechanical ventilation system on a given day results in sustained and abnormally high levels

24We construct these variables following the same procedure as our main treatment variable. The measurements
are standardized to facilitate comparisons across the different environmental factors.
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of CO2 in the classroom. We construct a data-driven algorithm where we detect days when

there are abnormal levels of CO2 for a sustained amount of time in the classrooms. Using this

variation, we build a two stage least square strartegy to instrument the average exposure over

the term with the number of days that the ventilation system in the classroom is not working

properly.

4 Results

4.1 Indoor Air Quality and Student Performance

This section presents our main estimation results linking the variation of classroom CO2 concen-

trations in the school term to student performance in subsequent standardized tests, followed

by a heterogeneity analysis, and a series of robustness checks.

4.1.1 Main Results

In Table 3, we report our baseline results of the relationship between classroom ventilation

as described by the CO2 concentrations and test scores. The table displays the (standardized)

estimated coefficients in Eq. 1, introducing sequentially the set of time-varying controls and fixed-

effects to test the sensitivity of the parameters to multiple specifications. The results indicate

that high concentrations of CO2 in the classroom during the school term lead to significantly

lower performance of students in the test.

Column (1) in Table 3 describes the estimates in a regression only including student, class-

room and period fixed effects. The results from this simple regression show a negative relationship

between average concentrations of CO2 in the term and the test scores. The estimated dam-

age of CO2 on test scores after controlling for basic environmental conditions in the classroom

(Column (2)) shows that a one standard deviation higher exposure to average daily peak CO2

levels during the school-term lowers student performance by 0.094 standard deviations. The

estimates associated with other environmental parameters considered in the study (i.e. PM10,

temperature, humidity) indicate that these factors have, on average, no significant impact on

test scores, conditional upon the inclusion of fixed effects. It is important to note that indoor

temperature or particles have a lower range of variation in our data set, due to the thermal

control infrastructure in the schools (i.e. heating systems). In addition, the geographical density

of the schools in our sample limits the cross-sectional variation of coarse particles, our proxy for

particulate matter in our sample. The changes over time in those conditions are controlled for
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Table 3: Average Daily Peak CO2 Concentration During Learning Period on Standardized Test Scores

Dependent Variable: Standardized Test Scores

(1) (2) (3) (4) (5)

CO2 −0.066∗ −0.094∗∗ −0.115∗∗∗ −0.108∗∗ −0.110∗∗∗

(0.037) (0.041) (0.043) (0.045) (0.038)
PM10 0.016 0.010 0.044 0.047

(0.062) (0.058) (0.057) (0.071)
Temperature −0.014 −0.011 −0.006 −0.016

(0.029) (0.029) (0.025) (0.031)
Humidity 0.058 0.066 0.055 −0.029

(0.048) (0.053) (0.053) (0.067)
Age [8-9] −0.030 −0.024 −0.032

(0.039) (0.039) (0.038)
Age [10-13] −0.022 −0.019 −0.019

(0.025) (0.025) (0.024)
Class Size 0.021∗∗∗ 0.024∗∗∗

(0.008) (0.008)
Class Size Sq. −0.000∗∗ −0.000∗∗

(0.000) (0.000)
Avg. Noise −0.039 −0.055

(0.031) (0.040)

Fixed Effects
Student by Domain Y Y Y Y Y
Period Y Y Y Y Y
Classroom Y Y Y Y Y
Years of schooling N N Y Y Y
School by Period N N N N Y

Obs. 37,451 37,451 37,451 37,451 37,451
Adj. R2 0.741 0.741 0.750 0.750 0.754

Notes: All models relate average daily peak of CO2 concentration in the classroom over the school term with subsequently
obtained standardized test scores. We standardize all coefficients in the table to facilitate the comparisons. Column (1)
provides results for a model with fixed effects for classroom, students by each subject domain (i.e., math, spelling, vocabulary,
etc.) and period. Column (2) provides results for a model that controls for observed and unobserved physical conditions
within the classroom using average daily peaks of other IAQ variables and classroom fixed effects. Column (3) displays results
for a model that adds the students’ age which is included based on the tirtile of the distribution, setting the youngest group
in our sample Age 5 to 7 as reference group. Column (4) includes controls for class size (i.e., number of students enrolled)
and average noise levels (used as a proxy for student behavioral patterns in the classroom). Finally, the last column (Column
(5)) adds school by period fixed effects, relying only in the variation within each specific school in a given school term (i.e.,
variation in conditions across classrooms) and rule out unobserved heterogeneity at the school level. Clustered standard
errors at the classroom by period level are shown in brackets and significance levels are ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1.

by the period fixed effects and school-period fixed effects.

The decline in test scores following terms with poor air quality relative to their own scores

following terms with good air quality in the classroom are not driven by other channels poten-

tially correlated with CO2 in the school term leading up to the test, as seen in the next three last

columns of Table 3 (Column (3)-(5)). Controlling for changes in student age, and for promotions

of students within the curriculum to higher level groups (or students repeating the same grade)
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Table 4: Average Daily Peak CO2 Concentration on Standardized Test Scores

by Domain by Age Advice to
University
prep.(1=Yes)
(7)

Spelling Math Reading [5-7] [8-9] [10-13]
(1) (2) (3) (4) (5) (6)

CO2 −0.022 −0.215∗∗∗ −0.116∗∗ 0.109 −0.173∗∗∗ −0.185∗∗∗ −0.127∗∗∗

(0.061) (0.057) (0.059) (0.072) (0.052) (0.064) (0.003)

Obs. 10,627 10,437 8,434 9,553 13,164 14,734 193
Adj. R2 0.757 0.784 0.750 0.720 0.775 0.762 0.031

Notes: All models relate average daily peak of CO2 concentration in the classroom with standardized test scores in spelling
(Column (1)), Maths (Column (2)) and Reading (Column (3)). In addition, Columns (4)-(6) provide the results decomposed
by different student age. All specifications in Columns (1)-(6) include the complete set of environmental controls (particulate
matter, temperature, humidity and noise), class size, and classroom, student and period fixed effects. In addition to this list,
Columns (4)-(6) includes student by test domain fixed-effects. Column (7) relates average daily peak of CO2 concentration
in the classroom with the probability that the teachers advise that the student attend a university preparing high-school.
Specification in Column (7) includes environmental controls and class size as controls. Clustered standard errors at the
classroom by period level are shown in brackets. ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1.

has nearly no effect on the point estimate (Column (3) in Table 3). Controlling for changes in

class characteristics leaves our estimates nearly unchanged. This suggests that our estimates are

measuring direct impacts of poor ventilation in the classroom, and not changes in class size or

changes in activity patterns in the classroom (Column (4) in Table 3).

Finally, Column (5) presents the results of a regression including school-period fixed effects,

controlling flexibly for any school-level changes across periods in our sample, such as outdoor

environmental conditions (e.g. air pollution or outdoor temperature), investments in equipment,

or changes in the leadership of the school. Again, the results remain largely unaltered, with a

0.11 standard deviation lower average test result for a one standard deviation increase in CO2

exposure. Overall, the results reported in the table support our hypothesis that our findings

reflect the direct effects of ventilation quality in the classroom during the school term, rather

than confounded characteristics of schools or classes.

4.2 Heterogeneity

In this section, we examine heterogeneity in the treatment effects reported in Table 3. In par-

ticular, we test whether there are differences in treatment effects across tests in our sample.

Testing domain. Table 4 presents the estimates of our main regression for the different

sub samples, including the full set of fixed effects and controls. Column (1) to (3) in Table

4 show the estimated impact of CO2 separately for the three major subject domains in our

sample of tests - i.e, spelling, mathematics, and reading. The Table shows that the results in

the pooled estimation, including all tests in the sample, are mainly driven by mathematics tests
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and reading comprehension tests, while that spelling does not seem to be significantly affected

by bad ventilation quality in the classroom.

Student age and secondary-school advice. Columns (4) to (6) in Table 4 present the

main estimates for three age groups (5 to 7 years old, 8 to 10 years old, and older than 10 years

old). The results indicate that the impact of CO2 is strongest for the two oldest groups. This

is important, since the Netherlands has high school education at different levels, and the choice

for a specific level is made when pupils are in the final primary school year.

The final year of primary school education includes a set of exams that shape the long term

education of students. In their final year, students take a final set of standardized tests conducted

with the sole purpose of informing the teacher’s advice about what type of secondary school

students should attend (university vs. professional education oriented secondary schools).25

In a cross-sectional analysis, we connect the scores in the test informing the teacher’s advice

on the type of secondary school that the student should attend with the CO2 levels in the

term preceding the test. We relate the school term CO2 exposure in the classroom preceding

the tests informing secondary-school advice with its result, and with the probability that the

test results point to advising the student to go to a university-oriented high school. Column

(5) in Table 4 shows results for this analysis, including controls for the other environmental

parameters, age, and the class size. This result suggests that a one standard deviation increase

in CO2 concentration is associated with a 13% lower chance to get a test result recommending

a student to go to the two most advanced high school levels.

Treatment decomposition by day of the week. Finally, we explore differences in impacts

associated with high concentrations of CO2 across school week days. We construct CO2 con-

centration measures specific for each day of the week, and re-estimate our main specification

1. Supplementary Table A.1 displays the coefficients associated with the average concentration

25The secondary school system in the Netherlands includes three different types of high-school that prepare
students for three different types of career paths after completing high-school (academic university, polytechnic
schools or straight to the labor market after high-school). Students in the Netherlands can attend different types of
high schools, according to their performance in primary school. The first type of high school, “VMBO”, requires the
lowest performance in primary school education, and it is orientated towards acquiring practical sets of skills. This
all but precludes a subsequent college education. The second level, “HAVO”, requires an intermediate academic
level and focuses on a mix of applied and conceptual skills. This type of high school prepares students for higher
education at the polytechnic or community college level, after which it is still possible to enter university. Finally,
for students with the highest level of academic achievement, “VWO” schools teach more conceptual subjects
with most of these students entering research universities after high school completion (Supplementary Figure
D.3 displays the distribution of test scores in the final test separately for each recommended high school track).
Teachers calculate a comprehensive score combining all these test results and compare it with their own advice. If
the advice shown by the tests points at a more advanced high school level than advised by the teacher, teachers
are obliged to review their decision, if in turn the opposite occurs, there are no consequences and the original
advice remains.
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of CO2 in different school days. The results indicate that poor environmental conditions within

the classroom are equally important across school days, except for Wednesdays, when we do not

find a significant effect of CO2 exposure. In the Netherlands, the current educational calendar

indicates that children should only be at school for half a day on Wednesdays, and therefore

being exposed to conditions in the classroom for half of the time than a regular day. This result

provides supportive evidence on the role of exposure to CO2 driving our estimates of the drop

in test scores associated with poor air quality, since our estimates are weakest for the days that

students are exposed to CO2 in the classroom for the shortest period of time (half of time in

normal days).

5 Robustness

5.1 Specification Tests

In our main results, we include all indoor climate regressors as the average of the daily peak

exposure over the school term. This subsection presents the results of a specification curve anal-

ysis (Simonsohn et al., 2020), where we test the sensitivity of our main results to the functional

form of our environmental exposure measures. In particular, we run a variety of specification

tests, where we include in the regression model different forms of our treatment measure and

indoor environmental controls.

Specification curve analysis of environmental parameters. Figure 2 displays the coef-

ficients and confidence intervals associated with the concentration of indoor CO2 in the school

term preceding the test for dozens of combinations of different forms of the CO2 variable and

the environmental controls. In our main specification, our measure of exposure during the term

is based on the average daily peaks across all teaching days in the term (denoted in Figure

2 as CO2(z–score DAP)). The figure shows the sensitivity of the estimate to specifying the

school-term concentrations of CO2 based on average daily average concentrations (CO2(z–score

DAM)), average daily average concentrations after correcting the algorithm to consider only the

minutes that children were inside the classroom (CO2(z–score DAMWI)) 26, a dummy variable

indicating that the school term average of daily peaks in CO2 concentration was above 2500

ppm (CO2 > 2, 500 ppm (DAP)), and a dummy variable indicating that the school term av-

erage of daily averages of CO2 was above 1500 ppm (CO2 > 1, 500 ppm (DAM)). Similarly,

26See Supplementary Section D.3 for a description of the algorithm to detect the presence of students in the
classroom.
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Figure 2: Specification Sensitivity Curve

Notes: Figure plots coefficients from separate (standardized) estimates of the main effect of CO2 on test scores
(i.e, coefficient β in Equation 1). Dots describe point estimates. Vertical lines indicate 95% confidence intervals.
Alternative models include different specifications for CO2 exposure levels during the school term. This includes
the average daily mean of CO2 (CO2(z − score,DAM)),average daily mean of CO2 including only the minutes
that the classroom is occupied (CO2(z − score,DAMWI)) and two dummy variables indicating number of days
in the term that the daily peak of CO2 is above 2,500ppm (CO2 > 2, 500ppm,DAP )) or the daily mean of
CO2 is above 1,500ppm (CO2 > 1, 500ppm,DAM)). Next set varies redefines the specification of envrionmen-
tal controls. Including a linear (Linear(DAM)) and quadratic (Quadratic(DAM)) form of daily averages of
each environmental factor, and a linear (Linear(DAP )) and quadratic (Quadratic(DAP )) form of daily peaks
of each environmental factor. Finally, the last includes multiple transformations of noise readings in the class-
room. Background noise is included as average daily average over the term (Noise(z − score,DAM)), average
daily peak over the term (Noise(z − score,DAP )), number of minutes in a day with noise levels above 40dBA
(LinearMins.w/Noise > 40dBA) and its squared term (QuadraticMins.w/Noise > 40dBA).

we test different specifications of the environmental controls based on the school term daily

averages (Linear (DAM)) and the school term daily peaks (Linear (DAP)), their quadratic form

(Quadratic (DAM)), and the school term daily peaks (Linear (DAP)) and their quadratic form

(Quadratic (DAP)).

Figure 2 shows that our results are robust to the different specifications and combinations

of the treatment and environmental control variables. The coefficient shows high stability in

terms of its magnitude, sign, and statistical significance. The estimates in our main specification

are within the confidence intervals of the CO2 coefficient in each specification of the curve.27

The occupancy patterns in the classroom are the key source of variation in the levels of CO2

and generate intraday variation in the CO2 measurements that introduce measurement error in

our estimation, and reduce the size of our coefficient. The consistency of our estimates across

27The few specifications that are not statistically significant are associated with the school term average of daily
mean, without the adjustment for the minutes that children are in the classroom (CO2 (z–score) DAM).
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specifications supports the robustness of the findings, and indicates that our results are not

driven by a specific definition of exposure measurement.

Noise measures of activity patterns in the classroom. Alterations in children’s activity

patterns might generate changes in CO2 levels. As physical activity increases, the exhalation rate

increases, producing a subsequent increase in the production of CO2 and ultimately increasing its

concentration in the classroom. To test the role of these channels in our setting, we use the noise

sensor to construct multiple indicators of activity patterns among children in the classroom. In

particular, we include the school term average of daily peaks and daily averages, and a variable

capturing the number of minutes in the school term where the sensor in the room captured a

signal that was above 40 dBA,28 as a proxy of the number of minutes where occupants were

actively moving or speaking. Figure 2 shows the robustness of our results to changes in the

specification of the noise in the room. This suggests a lack of influence of classroom activity

patterns on our estimates, and therefore indicates that alterations of activity patters in the

classroom do not play a meaningful role in the relationship between ventilation quality and

learning outcomes we document in our study.

Falsification test: miss-assignment of sensor to student. Finally, we perform a set of fal-

sification tests where we misspecify the exposure to CO2 during the school term for each student.

We randomly choose a sensor from another classroom than the one to which the student was

allocated and relate the CO2 concentration in the wrongly assigned classroom with the student’s

subsequent test scores. We reproduce this test 1000 times, each time randomly drawing a sensor

different from the one allocated to the classroom where the student received lessons during the

school term, and create a distribution for the coefficients that we obtain from fitting Equation

(1) using the miss-assigned CO2 concentration. In Supplementary Figure B.1, we show the dis-

tribution of these estimated coefficients associated with CO2 concentrations from classrooms

within the same school but different to the one where the student learned (left plot) and from

classrooms located in any other school in our sample. These estimates are mostly insignificant

and distribute fairly normal around zero, with the estimate from our main specification falling

within values located in the left tail in each case.

28We tested the sensitivity of the results to different thresholds showing no influence in our estimates.
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Figure 3: Correlation Between Teacher Quality and Classroom CO2 levels

(a) Only Teacher FEs
(b) Teacher, Domain, Period, and Years of schooling
FEs

Notes: The figure describes the correlation between the estimated teacher fixed effects in Equation 2 and the estimated
teacher fixed effects in Equation 3. Panel (a) includes no controls in the regression models. Panel (b) controls for test
domain, period and student years of schooling at the time of the test. Thus defined, the Pearson correlation coefficients
between teacher quality and ventilation quality are 0.18 and -0.12, respectively, both statistically insignificant. The regression
coefficients associated with the average CO2 peak levels in the classroom (denoted by x in the regression equations displayed
in the figures) show a small and not statistically significant relationship between CO2 levels and value added measures of
teaching quality.

5.2 Teacher Quality and Classroom Ventilation

A key challenge in the identification of classroom infrastructure at schools has to do with its

correlation with teacher quality. It is possible that high-quality teachers understand the impor-

tance of good (ventilation) infrastructure better, or that good teachers are better at choosing

classrooms with such infrastructure. This correlation between teacher quality and ventilation

quality would therefore challenge the interpretation of our results as air quality impacts.

In this subsection, we estimate the correlation between teacher quality and the levels of

CO2 in the classroom where they teach. We estimate teacher quality using teacher value-added

measures (Chetty et al., 2014; Rivkin et al., 2005), based on differences in test-scores by students

at the end and the beginning of the school-term taught by the teacher. We link the value-added

in test-scores of teachers with the average levels of CO2 in the classrooms where the teacher

taught. 29

Figure 3 displays the link between the two sets of fixed effects, to test for a possible link

29We calculate the teacher-specific differences by extracting teacher fixed-effects in the following regression
models:

CO2ctp = TeacherCO2
p + εitp (2)

and

∆t
t−1Scorecdp = Teachertestsp + εitdp (3)

where TeacherCO2
p in Equation 2 describes the teacher fixed effects, containing dummy variables capturing dif-

ferences across teachers in the CO2 levels observed at the classrooms (c) allocated in the school term (t) to the
specific teacher (p). ∆t

t−1Scorecdp describes the difference between a student’s test scores at the end of school-term
t and t1 (just before and after being instructed by teacher p). Similarly, in Equation 3, Teachertestsp describes the
teacher fixed effects, containing dummy variables capturing differences across teachers in the test scores of their
students.
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between teacher quality and classroom CO2. The lack of a statistically significant relationship

between the two sets of fixed effects indicates that teachers are not material for the impacts of

CO2 on the performance of their students.

5.3 Instrumenting CO2 Concentrations in the Classroom with Failures in

Mechanical Ventilation Systems

In this subsection, we explicitly test for the role of the school infrastructure (i.e. HVAC system)

as a driver of our main effects. We develop a data-driven algorithm to detect infrastructure

failures based on the presence of jumps (i.e. sudden, transitory and abnormally high levels of

CO2) in the time series of daily peaks of CO2 in classrooms. Then, we implement a two-stage

least square strategy (2SLS) where the school term average concentration of CO2 is instrumented

with the number of days that the algorithm detects that the ventilation system supplying fresh

air to the classroom is broken. For this analysis, we restrict the sample to 85% of schools that

are mechanically ventilated. These schools have an HVAC system, refreshing the air in the room

with outdoor air.

The main consequence of a failing HVAC system is the reduction of air exchange rates in a

classroom, letting the level of CO2 accumulate to (abnormally) high levels. High concentrations

of CO2 are among the main indicators used by technicians to detect failures in ventilation

systems. The failure of engines or blockage of pipes in the system are common failures that

generate abnormally high concentrations of CO2 in a classroom, which remain high until the

system is repaired. Ventilation failures are unlikely to be correlated with teaching quality, as

they are the consequence of an infrastructure failure that teachers cannot predict and have no

power over.

We use data from our sensors to detect spikes in the daily concentration of CO2 in the

classroom. We design an algorithm to detect outliers in the time series of daily peaks for each

classroom. In particular, we infer from the data that there has been a ventilation failure by

regressing the daily peak and daily average levels of CO2 observed in each classroom on a series

of fixed effect that control for regularities (i.e. flexible trend) in observed CO2 levels during

lessons and specific dates (For a detailed description of the algorithm, see Appendix C). We

then create dummy variables Days Broken V entctv corresponding to bins v = (0, 1, 2, 3, > 3)

indicating the number of days with a detected broken ventilation over the school term, to build

an instrument of the treatment variable in our main specification (eq. 1).30

30Appendix Table C.2 displays the results using a linear specification of the instrument (number of days with
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Table 5: CO2 Concentration on Standardized Test Scores: Instrumental Variables Using Number of Days
With Broken Ventilation

IV OLS

Peak CO2 Average CO2 Peak CO2 Average CO2

(1) (2) (3) (4) (5) (6)

2nd Stage 1st Stage 2nd Stage 1st Stage

CO2 −0.250∗∗∗ −0.338∗∗∗ −0.111∗∗ −0.089∗

(0.047) (0.103) (0.048) (0.049)
1 day broken 0.650∗∗ 0.604∗∗

(0.253) (0.253)
2 days broken 0.440∗∗∗ 0.267∗∗

(0.086) (0.116)
3 days broken 2.119∗∗∗ 1.129∗∗∗

(0.194) (0.195)
> 3 days broken 1.122∗∗∗ 1.405∗∗∗

(0.310) (0.298)

Kleibergen-Paap
F-statistic 43.118 24.843
p-value 0.0000 0.0000

Obs. 32,442 32,442 32,442 32,442 32,442 32,442
Adj. R2 0.745 0.965 0.743 0.957 0.746 0.746

Fixed Effects
Student by Domain Y Y Y Y Y Y
Period Y Y Y Y Y Y
Classroom Y Y Y Y Y Y
Years of Schooling Y Y Y Y Y Y

Controls
IEQ Parameters Y Y Y Y Y Y
Age Y Y Y Y Y Y
Class Size Y Y Y Y Y Y

Note: This table presents results for our main specification when instrumenting CO2 concentration levels during
the learning period using dummies indicating the number of days that the ventilation in the school was detected as
broken by our algorithm. Column (1) shows results from instrumenting average daily peaks in CO2 concentration
during the school term and Column (2) shows results from the first stage of the instrumentation. Columns (3)
and (4) show the same set of results as columns (1) and (2), but from instrumenting average daily mean levels of
CO2 concentrations. Columns (5) and (6) show the corresponding OLS estimates from fitting Equation (1) using
the subsample of schools with mechanical ventilation. Clustered standard errors at the classroom by period level
are shown in brackets and significance levels are ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1.

Table 5 shows the coefficients from the two-stage instrumental variable regression, instru-

menting school-term average CO2 concentrations with the number of days that the mechanical

ventilation system was failing. Column (2) includes the first stage coefficients associated with the

set of dummy variables describing the number of days that the ventilation system was identified

the ventilation system broken). The results are consistent with the dummy variable specification, showing the
robustness of our results to different specifications.
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as broken. The high values of the F-statistic indicates strong predictive power of the ventilation

breakdown events on the school-term average CO2 average daily peak in the classroom over

the school term, after controlling for classroom fixed effects and the remaining factors listed in

our main regression (Eq. 1). Column (1) shows the estimates associated with the instrumented

CO2 concentrations are similar in magnitude and statistical significance as in our main results,

indicating that our main effects are mainly driven by ventilation breakdowns, identified as sud-

den jumps in the series of CO2 in classrooms. Column (3) and (4) shows the results using daily

averages of CO2 as treatment. Similarly, Supplementary Table C.3 replicates the heterogeneity

analysis using the 2SLS strategy, showing that the coefficients are consistent to our main coef-

ficients in sign and statistical significance, and larger in magnitude than the original regression

results.

6 Discussion and Conclusion

This paper provides the first evidence on how air quality conditions in the classroom affect

learning outcomes. We design and implement a large field study, deploying an indoor sensing

network in 27 primary schools, continuously monitoring the indoor air quality conditions in

216 primary-school classrooms, including 5,500 children at ages 5 - 13 years old. Using within-

child variation in exposure to air quality conditions, we document that systematic exposure to

poorly ventilated classrooms during the school term (as measured by high levels of CO2) im-

pairs student performance on nationally standardized tests. An increase in classroom CO2 level

during the school term by one standard deviation reduces subsequent test scores by 0.11 stan-

dard deviations. Our findings imply that exposure to poor indoor air quality directly interferes

with learning, highlighting the role of physical school infrastructure in determining educational

outcomes.

To understand the magnitude of the results, we benchmark our estimates with the literature

that evaluates the impact of a variety of other factors on test scores. First, we compare our

results to estimates from studies evaluating the impact of environmental stressors on test scores.

Recent studies show that child exposure to outdoor air pollution leads to a 0.04 to 0.05 standard

deviation lower test score (Persico and Venator, 2021; Heissel et al., 2022), which is about half

the baseline effect associated with elevated CO2 levels, as documented in this study. Similarly,

estimating the effect of heat exposure on standardized test scores, Park et al. (2020) document

that a one standard deviation increase in average temperature over the school year (SD =
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65◦F ) leads to a 0.15 standard deviation decrease in test scores, about 1.4 times the estimated

performance decrease associated with a standard deviation increase in CO2.

Another relevant comparison is to recent findings by Engzell et al. (2021), who study the

effects of primary school closings, due to COVID-19, on student performance, using the same

national tests exploited in this study. The estimates show that eight weeks of interruption in in-

person learning led to a 0.08 standard deviation decrease in standardized test scores,31 and a 0.11

standard deviation decrease in test scores for the sample of students with a lower socio-economic

background (comparable to students in our sample). The magnitude of the COVID-19-induced

performance decrease is almost identical to the results documented in this study.

Finally, we can compare the cost-effectiveness of investments required to improve indoor air

quality (through mechanical ventilation system upgrades) with two alternative school invest-

ments evaluated in the literature: class size reductions and the installation of air-conditioning

in schools. A program evaluation of the Tennessee STAR experiment shows that the average

cost associated with reductions in class size is $163 per child, for each percent of a standard

deviation increase in test scores (?). Similarly, the cost of increasing test scores by one percent

of a standard deviation through the installation of air-conditioning is ranging from $25 and $125

per student per year (Park et al., 2020). A recent report on ventilation systems in Dutch primary

schools estimates the cost to upgrade a non-mechanically ventilated school to mechanical venti-

lation is $592,190 (RuimteOK, 2021), or $463 per student for an average primary school of 230

children32. This upgrade aims to reduce the measured concentration of CO2 below 900ppm, that

is the equivalent in our sample of reducing the average levels of CO2 by one standard deviation.

Our baseline estimates show that a decrease in CO2 by one standard deviation translates into

an 0.11 standard deviation increase in test scores. The amortized cost of improving test scores

by 1 percent of a standard deviation via mechanical ventilation upgrades is USD42 per student

per year, which is much lower than reducing class size, and at the lower bound of the cost of

upgrading air conditioning in classrooms, as estimated by Park et al. (2020). 33

Our results also yield several lessons for ongoing response policies against the spread of

COVID-19. The airborne transmission of the SARS-COV-2 virus has elevated the salience of

room ventilation as an important factor to prevent the spread of the disease. Schools buildings

are among the major targets in many countries, due to the high density of children in classrooms,

31In the Netherlands, all classes were immediately migrated online, mitigating any interruptions in instruction
time.

32€500,997, Conversion based the average exchange rate in 2021.
33Amortized cost calculations are based on a 5 percent discount rate, an average economic life of the system of

20 years, and fixed costs of $592,190 per school per year.
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and the general lack or state of disrepair of ventilation and air treatment systems in schools.

Many countries are preparing investment programs to improve ventilation, through installation

or modernization of HVAC systems, or upgrading the standards of ventilation in buildings.

However, the ambition of these investment programs is quite limited. For example, the Dutch

government has allocated €6 billion to remediate the results of the COVID-19 pandemic on

learning outcomes, as compared to allocating €400 million for repairs and maintenance of school

ventilation systems. Our results suggest that improving in indoor air quality in schools has

relevance beyond the reduction of the spread of viral diseases, such as COVID-19, and can

support children’s educational outcomes.
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Appendix

A Estimates by different days of the week

Table A.1: Decomposition of CO2 impacts by day of the week

Mondays Tuesdays Wednesdays Thursdays Fridays

CO2 (z-score) −0.075∗ −0.072∗∗ 0.036 −0.065∗∗ −0.071∗

(0.043) (0.034) (0.040) (0.032) (0.038)

Fixed Effects
Student by Domain Y Y Y Y Y
Period Y Y Y Y Y
Classroom Y Y Y Y Y
Proficiency Y Y Y Y Y

Controls
IEQ Parameters Y Y Y Y Y
Age Y Y Y Y Y
Class Size Y Y Y Y Y

Obs. 34,675 36,710 33,764 36,564 35,344
Adj. R2 0.7559 0.7523 0.7736 0.7503 0.7515

Note: Each model relates standardized test scores with only the average daily peak CO2 measured during each
of the days during the learning period indicated in the column name. School days in Dutch primary schools start
at 8am and finish at 4:00pm, except for Wednesdays when school days end at 12:30pm. The last column includes
daily average peak CO2 observed in all days of the week. Clustered standard errors at the classroom by period
level are shown in brackets and significance levels are ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1.
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B Falsification Test

Figure B.1: Falsification Test

Note: Left panel shows the frequency of coefficient point estimates obtained from fitting Equation (1) 1000 times,
each time randomly assigning to each classroom CO2 concentrations observed in another classroom of the same
school and in the same period. Right panel shows the frequency of coefficient point estimates obtained from fitting
Equation (1) 1000 times, each time randomly assigning to each classroom CO2 concentrations observed in another
classroom in another school and in the same period. The vertical lines indicate the coefficient we estimated as
reported in Table 3.
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C Broken ventilation: robustness

C.1 Description of algorithm

We use data from our sensors to detect spikes in the daily concentration of CO2 in the classroom.

We design an algorithm to detect outliers in the time series of daily peaks for each classroom.

In particular, we infer from the data that there has been a ventilation failure by regressing the

daily maximum and daily average levels of CO2 observed in each classroom on a series of fixed

effect that control for regularities (i.e. flexible trend) in observed CO2 levels during lessons and

specific dates:

CO2schτ = αcht + αcwt + ατ + εchτ (4)

, where CO2chτ is the maximum level of CO2 observed in classroom c, during the lesson that

started at time h on date τ , αcht is a classroom c by hour of the school day h during learning

period t, αcwt is a classroom by day of the week w during learning period t, and ατ is a date

fixed effect that controls for common environmental factors affecting all classrooms at the same

time, such as weather conditions.

To determine whether a specific classroom encounters a ventilation system breakdown during

a specific day, we look at the residual elements resulting from the previous regressions ε̂chτ =

{ε̂ch1, . . . , ε̂chτ , . . . , ε̂chT }. We consider that a ventilation system breakdown has taken place at

classroom c during time of the day h on date τ if ε̂chτ > 1, 500 ppm for both, average and

maximum levels. The key rationale of considering jointly the maximum and the mean values in

the analysis, rather than one of them separately, is to ensure that the abnormally high levels of

CO2 are sustained over a substantial amount of time during the day, rather than just being a

spike in CO2 of a few minutes.

Panel a in Figure C.1 shows average peak CO2 concentration levels in each classroom during

the school term in days with (in red) and without (in blue) broken ventilation. The figure shows

how the days detected as having a failing HVAC system show sudden increases in CO2. Panel (b)

in Figure C.1 displays the coefficients from an event study estimation that describe the changes

in CO2 in the days immediately preceding and following a failure in ventilation systems. The

estimates show that on the date where the ventilation system is broken, CO2 levels in the room

increase by about 40% compared to the average CO2 levels in the classroom, and remain high

(about 20% higher) during the day immediately after the breakdown was detected, suggesting
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Figure C.1: Average Peak CO2 Concentration and Mean Noise in classrooms on days with and without
broken ventilation

(a) Detection ventilation failures

(b) Changes in CO2 in days before and after ventilation failure events
detected

Note: Panel (a) shows daily peak CO2 concentration levels for each classroom in each academic term when
ventilation is functioning normally (blue) and when it is broken (red), as identified by our algorithm. Panel (b)
shows results of an event study identifying the excess levels of peak CO2 in days when a ventilation breakdown
has been detected (day 0) and during the following 5 days, compared to the average level during the previous 5
days.

that HVAC systems cannot always be fixed on the same day.

C.2 Two-stage least squares specification

We then create dummy variablesDays Broken V entctv corresponding to bins v = (0, 1, 2, 3, > 3)

indicating the number of days with a detected broken ventilation, in a regression including the

same fixed effects as in our main regression specification (Equation 1):

ĈO2ct =
∑

ξvDays Broken V entctv + ΓXct + αid + αc + αt + αl + εidt, (5)

Second stage:

Scoreidt =βĈO2ct + ΓXct + αid + αc + αt + αl + εidt. (6)
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Table C.1: CO2 Concentration on Standardized Test Scores: Instrumental Variables Using Number of
Days With Broken Ventilation

Dep. Variable: Standardized Test Scores

Peak CO2 Average CO2
Reduced Form

(1) (2) (3) (4) (5)

2nd Stage 1st Stage 2nd Stage 1st Stage

CO2 −0.250∗∗∗ −0.338∗∗∗

(0.047) (0.103)
1 day broken 0.650∗∗ 0.604∗∗ −0.165∗

(0.253) (0.253) (0.088)
2 days broken 0.440∗∗∗ 0.267∗∗ −0.053

(0.086) (0.116) (0.087)
3 days broken 2.119∗∗∗ 1.129∗∗∗ −0.527∗∗∗

(0.194) (0.195) (0.080)
> 3 days broken 1.122∗∗∗ 1.405∗∗∗ −0.337∗∗

(0.310) (0.298) (0.137)

Kleibergen-Paap F-statistic 43.118 24.843
p-value 0.0000 0.0000

Obs. 32,442 32,442 32,442 32,442 32,442
Adj. R2 0.745 0.965 0.743 0.957 0.746

Fixed Effects
Student by Domain Y Y Y Y Y
Period Y Y Y Y Y
Classroom Y Y Y Y Y
Years of Schooling Y Y Y Y Y

Controls
IEQ Parameters Y Y Y Y Y
Age Y Y Y Y Y
Class Size Y Y Y Y Y

Note: This table presents results for our main specification when instrumenting CO2 concentration levels during the school
term using dummies indicating the number of days that the ventilation in the school was detected as broken by our algorithm.
The table reproduces the coefficients reported in Table 5 (columns (1) and (3)) and their corresponding 1st stage coefficients
for the instruments, as well as the Kleibergen-Paap F-statistic and corresponding p-values (columns (2) and (4)). Column
(5) presents the reduced form estimates for the non-linear effect for days with broken ventilation on test scores. Clustered
standard errors at the classroom by period level are shown in brackets and significance levels are ∗∗∗p < 0.01; ∗∗p < 0.05;
∗p < 0.1.
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C.3 Using a log-linear specification for the instrument

Table C.2: CO2 Concentration on Standardized Test Scores: Instrumental Variables Using Number of
Days With Broken Ventilation

Dep. Variable: Standardized Test Scores

Peak CO2 Average CO2 Reduced
Form2nd Stage 1st Stage 2nd Stage 1st Stage

CO2 (IV) −0.253∗∗∗ −0.253∗∗∗

(0.063) (0.071)
Number of days broken 0.672∗∗∗ 0.174∗∗∗ −0.170∗∗∗

(0.184) (0.062) (0.058)

Obs. 32,442 32,442 32,442 32,442 32,442
Adj. R2 0.745 0.959 0.744 0.925 0.746

Kleibergen-Paap
F-statistic 13.38 28.63
p-val 0.000 0.000

Fixed Effects
Student by Domain Y Y Y Y Y
Period Y Y Y Y Y
Classroom Y Y Y Y Y
Years of Schooling Y Y Y Y Y

Controls
IEQ Parameters Y Y Y Y Y
Age Y Y Y Y Y
Class Size Y Y Y Y Y

Note: This table presents results for our main specification when instrumenting CO2 concentration levels during the school
term using the log number of days that the ventilation in the school was detected as broken by our algorithm. We apply the
inverse hyperbolic sine transformation to the number of days with a broken ventilation and take logs on the transformed
variable. We fitted each model several times using different scaling parameters as suggested in Aihounton and Henningsen
(2021) but observe very minor differences in the estimated coefficients, R2 values, and log likelihoods achieved, so we
present the results without scaling. The comparison set of results are available upon request. The table reproduces the
second (columns (1) and (3)) and first stage coefficients, as well as the Kleibergen-Paap F-statistics and corresponding
p-values (columns (2) and (4)). Column (5) presents the reduced form estimates for linear effect for days with broken
ventilation on test scores. Clustered standard errors at the classroom by period level are shown in brackets and significance
levels are ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1.
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C.4 Heterogeneity in the IV results

Table C.3: Average Daily Peak CO2 Concentration on Standardized Test Scores

by Domain by Age

Second Stage Spelling Maths Reading [5-7] [8-9] [10-13]

CO2 (IV) −0.159∗ −0.361∗∗∗ −0.308∗∗∗ 0.067 −0.233∗∗∗ −0.216∗

(0.082) (0.055) (0.077) (0.274) (0.052) (0.115)

Obs. 9,282 9,028 7,361 8,249 11,674 12,519
Adj. R2 0.602 0.651 0.632 0.569 0.777 0.707

First Stage

1 day broken 0.850∗∗∗ 0.592∗∗∗ 0.343∗∗∗ 0.820∗∗ 0.120 1.036∗∗∗

(0.208) (0.190) (0.104) (0.406) (0.116) (0.368)
2 days broken 0.422∗∗∗ 0.354∗∗∗ 0.529∗∗∗ 0.706∗∗∗ 0.511∗∗∗ 0.460∗∗∗

(0.157) (0.085) (0.132) (0.254) (0.088) (0.084)
> 2 days broken 1.739∗∗∗ 1.868∗∗∗ 1.785∗∗∗ 1.455∗∗∗ 2.040∗∗∗ 1.452∗∗∗

(0.215) (0.260) (0.137) (0.190) (0.103) (0.477)

Kleibergen-Paap F-stat 47.88 56.43 106.08 25.75 158.18 13.38
p-val 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Fixed Effects
Student Y Y Y Y Y Y
Student by Domain N N N Y Y Y
Period Y Y Y Y Y Y
Classroom Y Y Y Y Y Y
Proficiency Y Y Y Y Y Y

Controls
IEQ Parameters Y Y Y Y Y Y
Age Y Y Y Y Y Y
Class Size Y Y Y Y Y Y

Note: This table presents results for our main specification when instrumenting CO2 concentration levels during the school
term using the number of days that the ventilation in the school was detected as broken by our algorithm. Each column
shows second and first stage results for the subsamples indicated in the corresponding column name, and as described
in Table 4. Kleibergen-Paap F-statistics and corresponding p-values are also reported. Clustered standard errors at the
classroom by period level are shown in brackets and significance levels are ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1.

6

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4296077

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



C.5 Temperature and noise during ventilation breakdown

Figure C.2: Average Peak Temperature at Days Before and After Ventilation Breakdown Detected

Figure C.3: Average Peak Noise at Days Before and After Ventilation Breakdown Detected
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D Data Coverage and Algorithm to Detect Occupancy

D.1 Data Coverage

Figure D.2: Coverage of Sensors by Date

D.2 Secondary School Advice

D.3 Algorithm to Detect Occupancy

The algorithm used to determine entry and exit in the classroom searches for increases in CO2

concentration that are sustained in time while looking for a spike in the sound to detect the

exact time when the children have entered the classroom. Sustained increases in CO2 show that

the room is no longer empty and that the door is closed (the rate of CO2 generation is higher

than the rate of air exchange), while a spike in sound indicates that students have entered the

classroom and are (in the process of) sitting down. To detect when the classroom is empty, the

algorithm searches for a sustained decrease in CO2 concentration (the rate of CO2 generation

is now lower than the rate of air exchange, as the door is opened and there are fewer students

inside the classroom), while also looking for a spike in sound (students make noise when exiting

the classroom).
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Figure D.3: Composite standard score (all tests) and high school level advice

As described in the main text, the algorithm makes use of regularities in the behavior of both

CO2 and sound in the event of children entering or exiting the classroom. Those regularities are

easily spotted in Figure D.4. The graph plots how CO2 concentration and sound decibels move

between 8am and 4pm (school hours). One can identify how accumulation of CO2 starts and

sound spikes at the morning entry between 8:15am and 8:30am (8.25 to 8.5 in the graph). For

exits, the opposite occurs for CO2, while sound also spikes as is evident during the first break

at 10:15am (10.25 in the graph).

Using these regularities, the algorithm first detects all series of j consecutive minutes showing

a CO2 increase (decrease) during the school day (8am-4pm). After these series are found, we

label their first minute as a candidate entry or exit if at any of those minutes in the series, we

observe a spike in sound above a threshold s. Once all entry and exit candidates are labelled,

the algorithm orders them by time in decreasing order, and retains the first of all consecutive

entries before and exit occurs, and the first of all consecutive exits before an entry takes place,

such that in order to get an exit, an entry must have been labeled before and vice-versa (except

for the first entry and last exit of the day, of course).

We assess the algorithm’s sensitivity and accuracy relative to different values of j and s to

determine which give the optimal result. For this purpose, we labeled the observed entries and

exits during the school day for nearly 500 graphs of CO2 and sound series in different days and

schools (randomly chosen with monthly stratification). We then compare those labels to the
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Figure D.4: Example of observed levels of CO2 and Sound (normalized) across a school day

Note: This graphs describe how CO2 (above) and sound (below) move along a school day (8am to 4pm)
inside a particular classroom. It clearly shows how CO2 starts accumulating and sound spikes when
children enter the room and the opposite happens when they exit.

algorithm predictions.

To measure the algorithm’s performance we use two metrics: an F1 indicator and the al-

gorithms R2. The F1, widely used in machine learning contexts, takes the geometric mean of

two ratios: (i) the number of correctly predicted entries over all predicted entries; and (ii) the

number of correctly predicted entries over all observed entries. This indicator gives a sense of

the algorithm’s sensitivity as it assesses the proportions of false entry/exit predictions and those

of unpredicted but observed entry/exit. However, this measure is silent on the algorithm’s ac-

curacy in predicting the exact time at which entry and exits took place. Hence, we assess the

algorithm’s prediction accuracy using an R2 coefficient, a well known indicator to assess predic-

tive power. Figure D.5 shows the resulting F1 and R2 for j = 7, 8, 9, 10, 11, 12 minutes and for

s = 0.01, 0.05, 0.1, 0.2, 0.3 normalized dBA.

The combination of both indicator values suggests that j = 10 and s = 0.05 predict entries

and exits both most accurately as well as most frequently. The highest point achieved by the F1

indicator is at this point (upper right plot), while the highest R2 for both, entries and exits, is

also achieved at the same point. We therefore construct our data set on indoor environmental

quality using these parameters in the algorithm to predict when students are inside or outside

of the classroom.
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Figure D.5: Algorithm performance (F1 and R2)
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